

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

### The Gel Permeation Chromatography of Asphalt and the Characterization of Its Fractions in Terms of Molecular and Unit Sheet Weights

Huynh Hon Kiet<sup>a</sup>; Louis Ph. Blanchard<sup>a</sup>; Shadi L. Malhotra<sup>a</sup>

<sup>a</sup> DÉPARTEMENT DE GÉNIE CHIMIQUE FACULTÉ DES SCIENCES ET DE GÉNIE, UNIVERSITÉ LAVAL QUEBEC, QUEBEC, CANADA

**To cite this Article** Kiet, Huynh Hon , Blanchard, Louis Ph. and Malhotra, Shadi L.(1977) 'The Gel Permeation Chromatography of Asphalt and the Characterization of Its Fractions in Terms of Molecular and Unit Sheet Weights', Separation Science and Technology, 12: 6, 607 – 634

**To link to this Article:** DOI: 10.1080/00372367708057075

URL: <http://dx.doi.org/10.1080/00372367708057075>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## The Gel Permeation Chromatography of Asphalt and the Characterization of Its Fractions in Terms of Molecular and Unit Sheet Weights

HUYNH HON KIET, LOUIS PH. BLANCHARD, and SHADI L. MALHOTRA

DÉPARTEMENT DE GÉNIE CHIMIQUE  
FACULTÉ DES SCIENCES ET DE GÉNIE  
UNIVERSITÉ LAVAL  
QUEBEC, QUEBEC, CANADA G1K 7P4

### Abstract

Asphalt obtained from a refinery in Montreal was dissolved in toluene then fractionated in a preparative gel permeation chromatograph (prep.-GPC). Twenty-three fractions differing widely in molecular weights were collected and characterized by analytical GPC, viscometry, vapor pressure osmometry (VPO), element analyses, infrared spectroscopy (IR), and nuclear magnetic resonance spectroscopy (NMR). Similar studies were also carried out, for comparison purposes, on aliphatic and aromatic hydrocarbons to elucidate structure information on the different asphalt fractions.

The GPC chromatograms of the fractions generally revealed narrow distributions indicating that their separation into different component groups has been reasonably well achieved. The number-average molecular weights  $\bar{M}_n$  of the fractions, as computed from their GPC chromatograms making use of the calibration curve prepared with polystyrene, polyoxypropylene glycol, and polyoxyethylene glycol, did not correspond to those obtained by the VPO technique. To overcome the problem, an alternate approach was developed whereby a number of calibration curves were tested for the asphalt fractions, and the one which yielded the  $\bar{M}_n$  values closest to those found by VPO method was

\*Paper presented in part at the 20th Annual Conference of the Canadian Technical Asphalt Association in Toronto, November 24-26, 1975, and at the 44th Annual Congress of the ACFAS in Sherbrooke, Quebec, May 12-14, 1976.

retained for the present study.  $\bar{M}_w$  values could then be computed and related with  $[\eta]$  to calculate the Mark-Houwink constants  $K$  and  $a$ .

Aliphatic hydrocarbons were found to obey the "Benoit theory" according to which the elution volume of solutes is controlled exclusively by their hydrodynamic volumes. Aromatic hydrocarbons, however, were found to diverge considerably from this theory. The asphalt fractions were found to deviate somewhat from the Benoit theory but the extent to which this occurred was less than that observed with pure aromatic hydrocarbons.

The GPC, IR, NMR, and elements analyses results show that the aromaticity and the naphthenic carbon content of the fractions 5 to 9 in the intermediate molecular weight range are small while the paraffinic carbon content is maximum. Their unit sheet weight is 900 and is independent of their molecular weight. These appear to be made up of a number of unit sheets linked together rather than a single large pericondensed ring system.

## INTRODUCTION

The composition of asphalts and the nature of their various components has been the subject of considerable research during the past few decades. The characterization of asphalts by techniques, such as viscometry (1-4), rheological studies (5-10), nuclear magnetic resonance spectroscopy (NMR) (11-25), infrared spectroscopy (IR) (12, 25-34), gel permeation chromatography (GPC) (22, 35-50), mass spectrometry (51-56), x-ray diffraction (57, 58), electron scanning resonance (ESR) (18, 59-63), ultracentrifugation (4, 64, 65), electron microscopy (4, 66, 67), inverse gas-liquid chromatography (68-75), and liquid-solid chromatography (76-79), has brought to light an abundance of relevant information regarding some of their basic characteristics.

Viscometric data (1-4) and the rheological studies (5-10) have shown that there is association of asphaltenes in the solution. Their viscosity behavior resembles very much that of a low molecular weight material associated through relatively weak bonds into aggregates which are stable only at low shear rates. An increase in the shear rate reduces the viscosity, indicating that the degree of association in asphaltene solutions is reduced. The phenomenon of aggregation was likewise noted during the characterization of asphaltenes by vapor pressure osmometry (VPO) (16, 36, 47) when different molecular weights were obtained on changing the solvent. This was attributed to varying extents of associations because of the different polarities of the solvents used. A comparison of molecular weights of asphaltenes obtained by VPO or by viscosity measurements made under high shear rates (4) with those obtained by the ultracentrifugation

method revealed that ultracentrifugation (4), where the asphaltenes are not subjected to serious agitation, yielded higher molecular weights due to their possible aggregation.

The concept of aggregation in asphaltenes was studied by Dickie and Yen (36) who made use of other techniques, such as x-ray diffraction, mass spectrometry, VPO, and GPC, for characterization purposes. According to these authors, the microstructure of asphaltic materials in their elementary form consists of three entities: micelles, particles, and unit sheets. Micelles are described as being composed of smaller associated entities called particles which in turn are said to be made up of yet smaller unit sheets. The unit sheets are thought to be held together by intermolecular forces.

NMR studies on asphalts by Dickson et al. (20, 22) showed that the weight of unit sheets in petroleum residues may be calculated from the NMR data. Earlier studies on IR absorption (26) had pointed out the presence of aromatic and paraffinic groups in asphalts. Altgelt and Hirsch (23), who studied Venezuelan asphalt, proposed an extensive scheme of structure relationships with which they calculated the percentage of aromatic, naphthenic, and paraffinic carbons, the number of ring systems per molecule, their average size, their compactness, and substitutions in them. Haley (24, 47) and Dickinson (25) studied both blown and unblown Kuwait asphalts by GPC, VPO, and NMR. The measurements with the VPO instrument were made in various solvent mixtures and the results showed the different abilities of each solvent to break up intermolecular associations. This once again suggested that the asphaltene molecules consist of a number of unit sheets linked together rather than a single large pericondensed ring system. These authors have proposed a structural model around the aromatic, naphthenic, and linear chains in the asphalts, the different modes of bond formation having been computed by using simultaneous equations.

Studies based on x-ray diffraction by Yen and Erdman (57) revealed that the asphalt structure consists of stacks of about five condensed aromatic sheets surrounded by saturated cyclic and paraffinic substituents. Electron microscopic studies (4) showed that asphaltene clusters of varying size, with clustering more pronounced in those fractions which showed the highest molecular weights, occurred in the ultracentrifuge. The electron scanning resonance data of Tynan and Yen (60) suggest that association can take place either by  $\pi$ - $\pi$  interaction or by coordination through heteroatoms in the sheets. Inverse gas-liquid chromatographic (IgC) studies by

Petersen et al. (68-75) reveal that aggregate surfaces interact with many Iglc test compounds having chemical functional groups similar to those believed to be present in asphalts.

In spite of this abundance of valuable information available on asphalts in the literature, individual characterization of all asphalts must be carried out prior to their use because, depending upon their origin, their composition will vary considerably as will their rheological properties. Studies made on asphalt samples produced in large part in the Montreal refineries were carried out by Huot and Blanchard (49). These authors reported that the distribution of molecular weights of parent asphalts changed when these are subjected to thermal treatments. In order to study the effects of the thermal treatments on the changes which take place in the GPC molecular weight distribution of its various fractions, a parent asphalt was passed through a preparative type GPC from which 23 fractions of differing molecular weights were collected. Each fraction was characterized by analytical GPC, VPO, NMR, and IR spectroscopy. The principal results of these studies are related in the present text.

## EXPERIMENTAL

Thirty grams of an asphalt sample originating from a petroleum refinery in Montreal (Quebec) were dissolved in toluene (1% wt. solution) and fractionated on a Waters Associates ANA-prep. GPC. The separating system consisted of two 1.2 m long by 6.5 cm outside-diameter polystyrene-gel filled columns having, by the Waters method, maximum rated porosities of 100 and 350 Å, respectively. The fractionation was carried out by automatic repetitive injections of the sample solutions, 100 ml being injected each time. Each injection yielded 23 fractions of 140 ml each and required about 3 hr. The whole fractionation process lasted for upwards of 4 days.

### Analytical GPC

The various asphalt fractions obtained by prep.-GPC were analyzed with a Waters Associates, model 200, analytical GPC equipped with five polystyrene-gel-filled columns each, 1.2 m long and connected in series. Each column had, by the Waters method, maximum rated porosities of 60, 100,  $10^3$ ,  $5 \times 10^3$ , and  $10^5$  Å, respectively. The flow of solvent (THF purged with nitrogen) was maintained at 1 ml/min while the concentration of the polymer sample was limited to 1/4 of 1% in order to avoid

“concentration effects” on the peak positions in the chromatograms. The calibration of the instrument was performed with narrow distribution samples of polystyrene (PS), polypropylene glycol (POPG), polyoxyethylene glycol (POEG), and hydrocarbons (both aliphatic and aromatic) of known molecular weights.

### **Vapor Pressure Osmometry (VPO) Analyses**

Number-average molecular weights  $\bar{M}_n$  of the asphalt fractions were determined with a vapor-pressure osmometer (Mechrolab's Model 301A) operated at 37°C with benzene as solvent. The instrument constant, 400 ohms/liter/mole, was determined with organic compounds of known molecular weights, notably naphthalene, anthracene, and benzil.

### **Viscosity Calculations**

Calculation of the intrinsic viscosity of a given polymer or asphalt fraction was carried out by making use of the flow-time measurement data obtained with Ubbelohde suspending-type viscometers at 25°C for five different sample concentrations involving tetrahydrofuran as the solvent. Knowing the flow-time of the solvent, the computation of the intrinsic viscosity  $[\eta]$ , is carried out with

$$[\eta] = \left\{ \frac{\text{flow time (sec) of the solution}}{\text{flow time (sec) of the solvent}} - 1 \right\} / c \quad (1)$$

when  $c \rightarrow 0$ .

### **NMR Analyses**

The NMR spectra of asphalt fractions dissolved in carbon tetrachloride were obtained at 25°C with a Varian Associates model HA-90 (90 MHz) instrument and at 75°C with 220 MHz spectrometer at sweep width of 10 Hz/cm. Tetramethylsilane (TMS) was used as the internal standard.

### **IR Analyses**

The IR spectra of the asphalt fractions were recorded on a Beckman-12 spectrophotometer from their solutions using cells of 0.05 mm thickness equipped with KBr windows and from pellets in which KBr acted as the support for the solid asphalt fractions.

## RESULTS AND DISCUSSION

In Table 1 are shown the weights associated with each of the 23 fractions separated from the parent asphalt by means of the Waters Associates ANA-prep. GPC operated at 25°C with benzene as the solvent. One notes that a major portion of the asphalt is associated with Fractions 3 to 14. Twenty of the 23 fractions (4 to 23) were dissolved in THF and characterized on a Waters Associates model 200 analytical GPC; Fractions 1 to 3 could not be dissolved completely in THF and thus could not be passed through the analytical GPC. In Fig. 1 are shown the results of the raw GPC

TABLE 1

Weight, GPC Elution Volume, Intrinsic Viscosity  $[\eta]$ , Number Average and Weight-Average Molecular Weights of Various Asphalt Fractions.

| Fraction no. | Weight (g) | Elution volume<br>$V_e$<br>in 5 ml counts | $[\eta]$<br>(dl/g) | $\bar{M}_n^a$<br>(GPC) | $\bar{M}_n$<br>(VPO) | $M_n^b$<br>(GPC) | $\bar{M}_w^b$<br>(GPC) |
|--------------|------------|-------------------------------------------|--------------------|------------------------|----------------------|------------------|------------------------|
| 1            | 0.090      | —                                         | —                  | —                      | —                    | —                | —                      |
| 2            | 0.184      | —                                         | —                  | —                      | —                    | —                | —                      |
| 3            | 0.592      | —                                         | —                  | —                      | —                    | —                | —                      |
| 4            | 1.213      | 30.6                                      | 0.059              | 4650                   | 2460                 | 2950             | 4040                   |
| 5            | 1.372      | 31.5                                      | 0.062              | 3225                   | 2220                 | 2160             | 2950                   |
| 6            | 1.786      | 33.0                                      | 0.055              | 1930                   | 1520                 | 1510             | 1930                   |
| 7            | 2.290      | 33.7                                      | 0.048              | 1310                   | 1090                 | 1120             | 1290                   |
| 8            | 2.560      | 34.5                                      | 0.039              | 1000                   | 900                  | 900              | 1030                   |
| 9            | 2.507      | 35.0                                      | 0.035              | 800                    | 770                  | 780              | 860                    |
| 10           | 2.063      | 35.7                                      | 0.032              | 650                    | 720                  | 680              | 710                    |
| 11           | 1.394      | 36.3                                      | 0.032              | 510                    | 630                  | 620              | 650                    |
| 12           | 0.921      | 37.1                                      | 0.032              | 390                    | 550                  | 570              | 590                    |
| 13           | 0.813      | 37.6                                      | 0.028              | 340                    | 550                  | 550              | 590                    |
| 14           | 0.634      | 38.0                                      | 0.033              | 300                    | 490                  | 550              | 650                    |
| 15           | 0.501      | 38.5                                      | 0.033              | 270                    | 580                  | 540              | 650                    |
| 16           | 0.424      | 39.2                                      | 0.029              | 220                    | 510                  | 490              | 500                    |
| 17           | 0.368      | Broad distribution                        |                    | —                      | —                    | —                | —                      |
| 18           | 0.285      | "                                         | "                  | —                      | —                    | —                | —                      |
| 19           | 0.249      | "                                         | "                  | —                      | —                    | —                | —                      |
| 20           | 0.192      | "                                         | "                  | —                      | —                    | —                | —                      |
| 21           | 0.187      | "                                         | "                  | —                      | —                    | —                | —                      |
| 22           | 0.123      | "                                         | "                  | —                      | —                    | —                | —                      |
| 23           | 0.184      | "                                         | "                  | —                      | —                    | —                | —                      |
| Total        | 20.932     |                                           |                    |                        |                      |                  |                        |

<sup>a</sup> Values obtained with calibration curve for polymer standards.

<sup>b</sup> Values obtained with calibration curve for asphalt fractions.

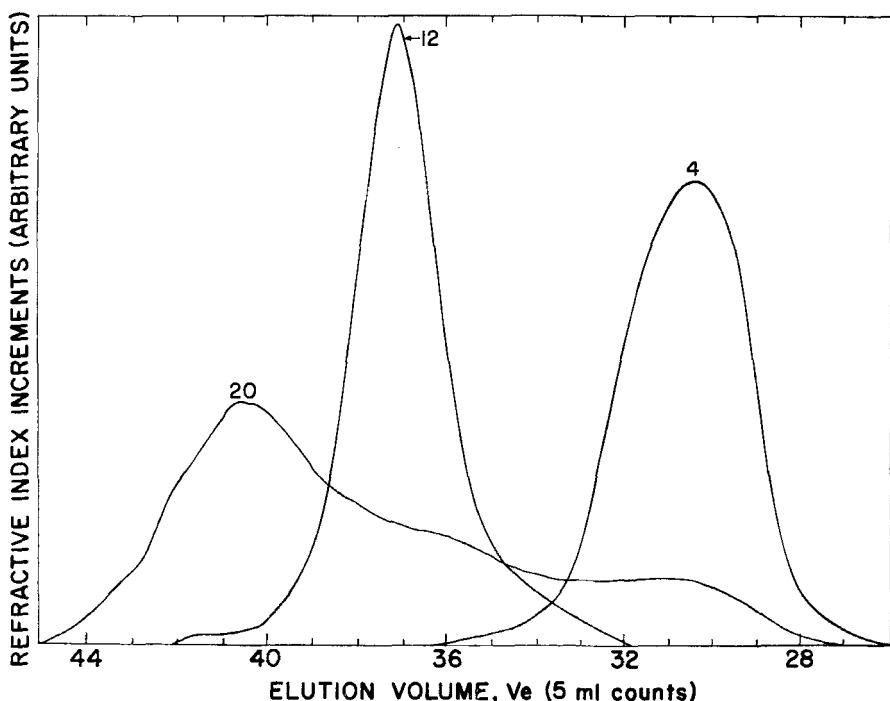



FIG. 1. GPC molecular weight distributions of asphalt fractions 4, 12, and 20.

molecular weight distributions of asphalt Fractions 4, 12, and 20. These show the quality of the separation obtained on the styrogel filled columns that were used. One notes that good separation into fractions is achieved primarily in the case of relatively higher molecular weight asphalt fractions (4 and 12) since the GPC molecular weight distribution of the low molecular weight Fraction 20 is indeed very broad! In Table 1 are also shown the elution volumes recorded for the 20 fractions on the analytical GPC. It may be observed that for Fractions 17 to 23 the distributions tended to be very broad. On the basis of the assumption that peak heights in GPC chromatograms correspond directly to the concentration of the asphalt species, irrespective of their molecular weights, the peak heights of the raw GPC curves of all samples were normalized and based on these heights, the normalized curves were drawn to see if their sum at different elution volumes corresponds to the same heights as in the parent asphalt. This is shown in Fig. 2 in which one sees that in the high molecular weight

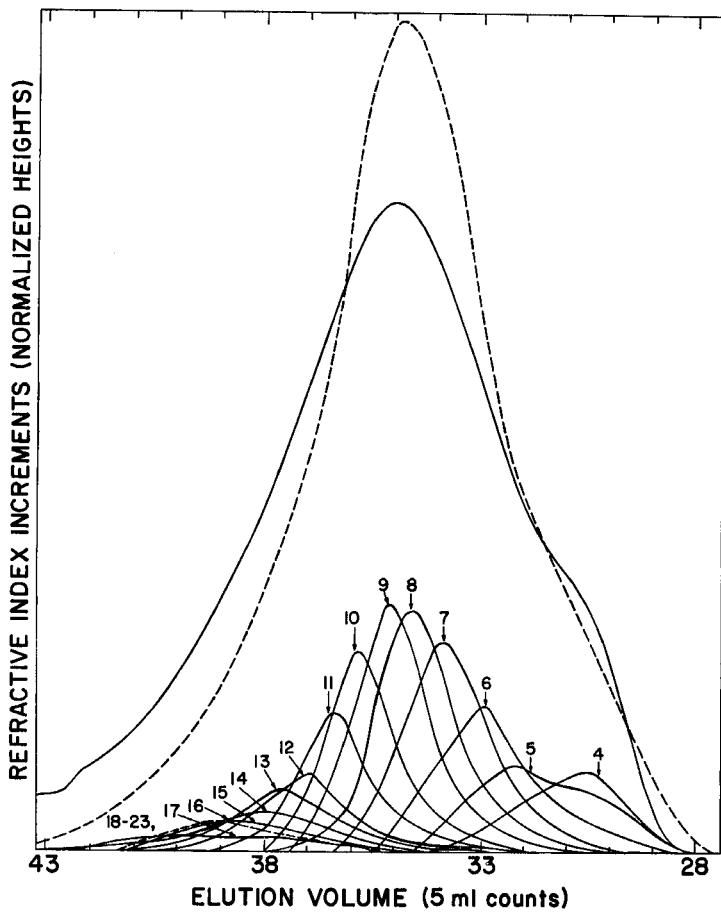



FIG. 2. Normalized GPC distributions of the parent asphalt and of its various fractions.

region there is practically no deviation at all; however, in the lower molecular weight region, the deviation is significant. It would appear that the fractions elute at slightly earlier counts than they do when present together in the parent bitumen. It is possible that the origin of this discrepancy lies simply in the corrections needed to remedy for axial dispersion of both the asphalt fractions and the parent substance in the columns.

In Table 1 are also shown the intrinsic viscosities  $[\eta]$  and the  $\bar{M}_n$  (VPO)'s of the asphalt fractions. In order to compute the Mark-Houwink constants  $K$  and  $a$ , where  $K$  and  $a$  are related to  $[\eta]$  and the molecular weight  $M$  as follows:  $\eta = KM^a$ , besides  $[\eta]$  one requires the values of  $\bar{M}_w$ . These can be calculated from the GPC curves of the asphalt fractions, if the calibration curve prepared with polymer standards is applicable to asphalts as well. In Fig. 3 is shown a plot of  $\log \bar{M}_w$  vs elution volume prepared using PS, POEG, and POPG standards. The following relations were used for the computations of  $\bar{M}_w$  and  $\bar{M}_n$ :

$$\bar{M}_w = (\Sigma h_i M_i) / \Sigma h_i \quad \text{and} \quad \bar{M}_n = \Sigma h_i / \Sigma (h_i / M_i) \quad (2)$$

In Eq. (2),  $h_i$  is the peak height at a given elution volume  $V_e$ , and  $M_i$  is the corresponding molecular weight. One notes from Table 1 that the  $\bar{M}_n$  values calculated with the calibration curve obtained with polymer standards do not agree with those obtained with the VPO technique, indicating that this curve cannot be used for the computations of  $\bar{M}_w$  values of different fractions. In order to overcome this problem, an alternate approach was developed. A number of calibration curves ( $\log \bar{M}_w$  vs  $V_e$ ) were tested for asphalt fractions and the one which yielded  $\bar{M}_n$  values closest to those found by the VPO method was retained for the present study. By making use of this calibration curve,  $\bar{M}_w$  values were calculated using Eq. (2). The results are presented in Table 1.

In Fig. 4 are shown log-log plots of  $[\eta]$  vs  $\bar{M}_w$  for some asphalt fractions. From the slopes of the linear lines, the value of  $a$  was found to be 0.5 and that for  $K$  was  $1.22 \times 10^{-3}$  dl/g. These values are of the same order of magnitude as that for polymers in general. A value of 0.5 for  $a$  further suggests that at 25°C THF is a  $\theta$ -solvent for asphalts.

### Universal GPC Calibration Curve for the Asphalt Fractions

Earlier studies on the parameters involved in the separation of polymers on GPC columns revealed that the molecular weight of the individual polymer was the most significant one. Later on, Benoit (80, 81), who worked on both linear and branched polymers, suggested that it was not

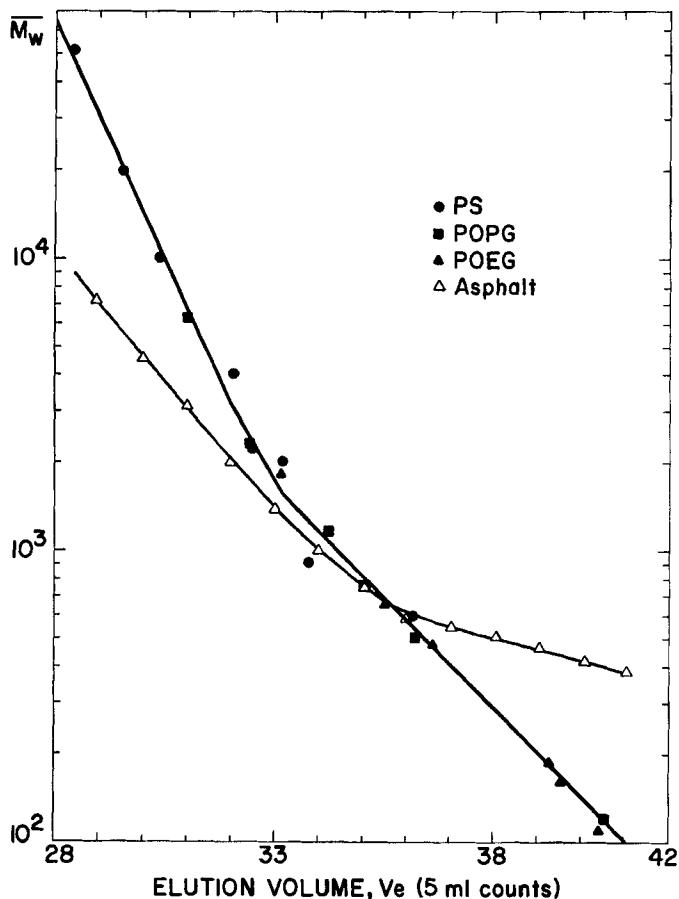



FIG. 3. GPC calibration curve,  $\log \bar{M}_w$  vs elution volume  $V_e$ , prepared with polystyrene standards and polymers of propylene and ethylene glycol.

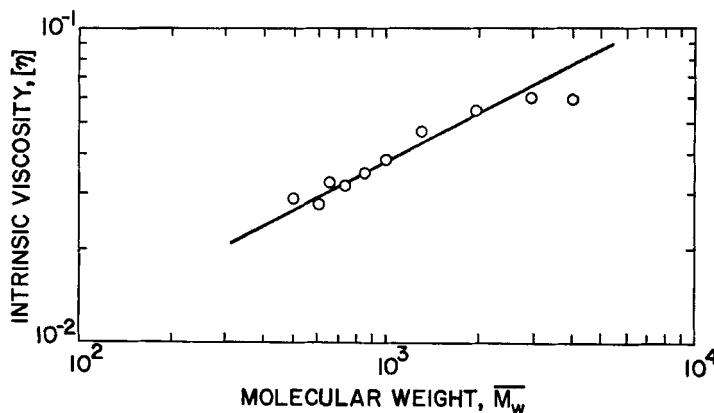



FIG. 4. Log-log plot showing the variation of  $[\eta]$  with  $\bar{M}_w$  for various asphalt fractions.

the molecular weight alone but rather the hydrodynamic volume ( $[\eta]M$ ) of the species which is the controlling parameter in their separation on GPC columns. Thus, if a plot of  $\log [\eta]\bar{M}$  vs elution volume were made with a given set of polymers, a linear or curved line should be obtained (depending on the range of molecular weights used) on which polymers originating from other monomers should fit as well. This is often referred to as the "Benoit Universal Calibration Curve." Many groups have confirmed this finding and more recently Belenkii et al. (82, 83) showed it to be applicable even to polymers of very low molecular weight.

With a view to verifying the validity of this curve for asphalt fractions, a universal calibration curve was prepared with PS, POEG, and POPG samples, based on the data given in Table 2. The  $[\eta]M$  vs  $V_e$  data in Table 2 for the asphalt fractions were then plotted on the same graph in an attempt to fit the calibration curve. Although the higher molecular weight fractions do indeed fall on the curve (Fig. 5), the lower molecular weight fractions deviate from it. In order to identify the nature of the lower molecular weight asphalts which deviate from the universal calibration curve,  $[\eta]M$  vs  $V_e$  data for both aliphatic and aromatic hydrocarbons, taken from Table 2, were plotted on the same graph. All of the aliphatic hydrocarbons respect the hydrodynamic volume vs elution volume relationship; however, the aromatic hydrocarbons obviously do not obey this concept. It seems therefore that aromatics constitute an important

TABLE 2

Molecular Weights  $\bar{M}_w$ , Elution Volumes  $V_e$ , Intrinsic Viscosity  $[\eta]$ , and the Products of  $[\eta]$ .  $\bar{M}_w$  for Polystyrene, Polyoxypropylene Glycols, Polyoxethylene Glycols, Aromatics, Aliphatic Hydrocarbons, and Asphalt Fractions

| Product or fraction no.         | $\bar{M}_w$ | $V_e$ | $[\eta]$ | $[\eta]\bar{M}_w$ |
|---------------------------------|-------------|-------|----------|-------------------|
| Polystyrenes (PS)               |             |       |          |                   |
| PS 51,000                       | 51,000      | 28.4  | 0.308    | 15,700            |
| PS 19,800                       | 19,800      | 29.5  | 0.174    | 3,450             |
| PS 10,300                       | 10,300      | 30.4  | 0.103    | 1,060             |
| PS 10,000                       | 10,000      | 30.3  | 0.105    | 1,050             |
| PS 4,800                        | 4,800       | 32.2  | 0.064    | 307               |
| PS 4,000                        | 4,000       | 32.1  | 0.058    | 232               |
| PS 2,200                        | 2,200       | 32.5  | 0.047    | 104               |
| PS 2,030                        | 2,030       | 33.2  | 0.044    | 89                |
| PS 900                          | 900         | 33.7  | 0.043    | 38                |
| PS 600                          | 600         | 36.2  | 0.032    | 19                |
| Polyoxypropylene Glycols (POPG) |             |       |          |                   |
| POPG 4,025                      | 6,250       | 30.9  | 0.092    | 575               |
| POPG 2,025                      | 2,310       | 32.5  | 0.060    | 139               |
| POPG 1,025                      | 1,300       | 34.3  | 0.038    | 49                |
| POPG 750                        | 750         | 35.1  | 0.036    | 27                |
| POPG 425                        | 460         | 36.2  | 0.025    | 12                |
| Propylene glycol                | 76          | 40.6  | 0.019    | 1.4               |
| Polyoxethylene Glycols (POEG)   |             |       |          |                   |
| POEG 600                        | 656         | 35.6  | 0.038    | 25                |
| POEG 400                        | 467         | 36.6  | 0.031    | 14                |
| Tetraethylene glycol            | 194         | 39.3  | 0.023    | 4.4               |
| Triethylene glycol              | 160         | 39.6  | 0.021    | 3.4               |
| Diethylene glycol               | 106         | 40.4  | 0.019    | 2                 |
| Aliphatic Hydrocarbons          |             |       |          |                   |
| Hexatriacontane                 | 507         | 35.2  | 0.046    | 24                |
| Dotriacontane                   | 451         | 35.6  | 0.039    | 18                |
| Octasosane                      | 395         | 36.2  | 0.032    | 13                |
| Tetracosane                     | 339         | 36.7  | 0.030    | 10                |
| Octadecane                      | 255         | 37.9  | 0.023    | 6                 |

(continued)

TABLE 2 (continued)

| Product or fraction no. | $\bar{M}_w$ | $V_e$ | $[\eta]$ | $[\eta]\bar{M}_w$ |
|-------------------------|-------------|-------|----------|-------------------|
| Aromatics               |             |       |          |                   |
| Benzene                 | 78          | 44.6  | 0.003    | 0.2               |
| Naphthalene             | 128         | 44.3  | 0.012    | 1.5               |
| Anthracene              | 178         | 43.8  | 0.017    | 3.1               |
| Chrysene                | 228         | 43.2  | 0.027    | 6.1               |
| Dibenz-[a-h]anthracene  | 278         | 42.3  | 0.026    | 7.4               |
| Triphenylmethane        | 244         | 40.6  | 0.018    | 4.5               |
| Asphalt Fractions       |             |       |          |                   |
| 4                       | 4,040       | 30.6  | 0.059    | 238               |
| 5                       | 2,950       | 31.5  | 0.062    | 183               |
| 6                       | 1,930       | 33.0  | 0.055    | 106               |
| 7                       | 1,290       | 33.8  | 0.048    | 62                |
| 8                       | 1,030       | 34.5  | 0.039    | 40                |
| 9                       | 860         | 35.0  | 0.035    | 30                |
| 10                      | 710         | 35.7  | 0.032    | 23                |
| 11                      | 650         | 36.3  | 0.032    | 21                |
| 12                      | 590         | 37.1  | 0.032    | 19                |
| 13                      | 590         | 37.6  | 0.028    | 17                |
| 14                      | 650         | 38.0  | 0.033    | 21                |
| 15                      | 650         | 38.5  | 0.033    | 21                |
| 16                      | 500         | 39.2  | 0.029    | 15                |

part in the lower molecular weight asphalt fractions as was confirmed from the results of NMR spectra which are discussed later.

Similar observations were made by Grubisic and Gallot (84) through GPC analyses which showed that for samples with identical molecular weights, those samples of aromatic origin had higher elution volumes than did the corresponding samples of aliphatic origin. This may be explained on the basis of an adsorption phenomenon affecting the aromatics in the GPC columns. This adsorption is dependent on the structure of the aromatics, the nature of the groups attached to them, and the polarity of the medium used for the separation (2, 85-89).

Based on the results of GPC analyses where it has been shown that the asphalt fractions fit the universal calibration curve, it can be concluded that asphalts behave much like polymers. The deviations from the uni-

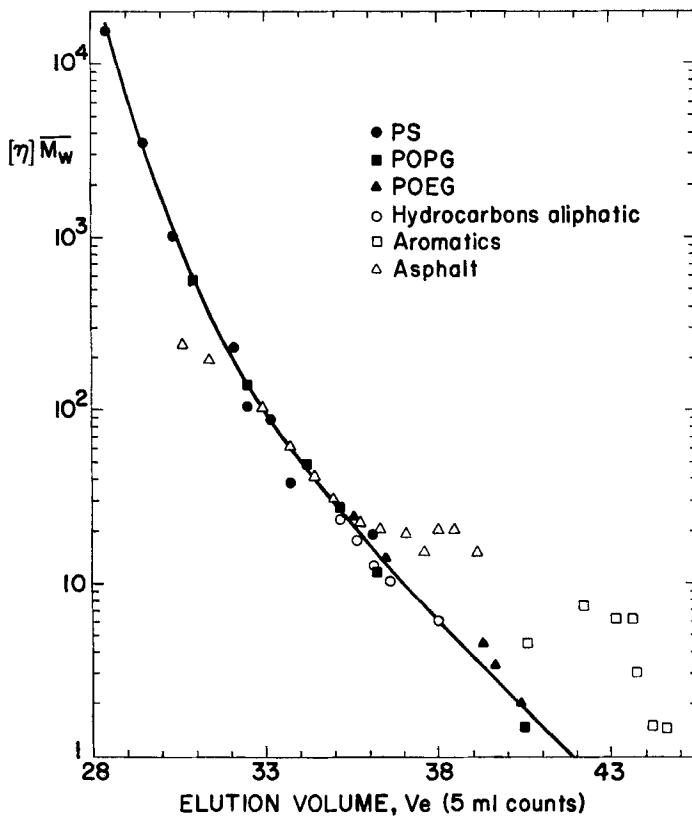



FIG. 5. Plot of  $\log [\eta] \bar{M}_w$  vs elution volume  $V_e$  for polystyrene, polyoxypropylene glycols, polyoxyethylene glycols, asphalt fractions, aliphatic hydrocarbons, and aromatics.

versal curve, observed for the lower molecular weight asphalt fractions, may also take place in oligomeric polymer materials due to the aromatic constituents in them. The concept of asphalts behaving like polymers is also seen from the plots of  $\log [\eta]$  vs  $\log \bar{M}_w$  (Fig. 4) shown earlier, where the variation is linear. This concept is in good agreement with that reported in the literature (2, 4, 23-26, 36, 47, 57) where it is suggested that asphalts have a linear structure made up of numerous "units sheets" rather than single large pericondensed aromatic ring systems.

The structural differences of the various asphalts as indicated by the GPC data may further be confirmed by other techniques, e.g., element analyses, IR and NMR spectroscopy. These techniques were used and the results obtained are discussed below.

### Element Analyses

In Table 3 are presented the results of the element analyses carried out at the "Organic Microanalyses" laboratory in Montreal. Although the proportion of different elements is not identical, these do not show significant trends except that the C/H atomic ratio is minimum for the intermediate asphalt fractions. Thus it is not possible to hold the element composition of each fraction responsible for the deviation observed with Benoit universal calibration curve. However, the atomic ratios C/H, O/H,

TABLE 3  
Element Analyses and Their Atomic Ratios for Various Fractions of the Parent Asphalt

| No. | C (%) | H (%) | N (%) | O (%) | S (%) | C/H (atomic ratio) | O/H (atomic ratio) | $\frac{O + S + N}{H}$ (atomic ratio) |
|-----|-------|-------|-------|-------|-------|--------------------|--------------------|--------------------------------------|
| 4   | 81.03 | 8.72  | 0.65  | 7.04  | 3.14  | 0.774              | 0.050              | 0.067                                |
| 5   | 83.06 | 10.37 | 1.19  | 2.10  | 2.74  | 0.667              | 0.013              | 0.029                                |
| 6   | 87.18 | 11.20 | 1.01  | 0.60  | 0.00  | 0.648              | 0.003              | 0.006                                |
| 7   | 81.99 | 11.04 | 0.59  | 4.24  | 2.14  | 0.618              | 0.024              | 0.034                                |
| 8   | 83.33 | 11.44 | 1.79  | 1.64  | 1.80  | 0.607              | 0.009              | 0.025                                |
| 9   | 82.42 | 10.51 | 0.30  | 3.71  | 2.39  | 0.653              | 0.022              | 0.031                                |
| 10  | 83.34 | 10.26 | 1.77  | 2.18  | 2.45  | 0.677              | 0.013              | 0.033                                |
| 11  | 81.67 | 10.38 | 0.76  | 4.41  | 2.78  | 0.655              | 0.026              | 0.040                                |
| 12  | 83.11 | 9.79  | 1.44  | 2.11  | 3.55  | 0.707              | 0.013              | 0.035                                |
| 13  | 82.41 | 9.30  | 0.67  | 4.90  | 2.72  | 0.738              | 0.033              | 0.047                                |
| 15  | 82.34 | 9.94  | 1.43  | 2.64  | 2.96  | 0.690              | 0.017              | 0.036                                |

and  $(O + S + N)/H$  calculated for each fraction and presented in Table 3 are of considerable significance in the computation of structural parameters and will be used in combination with the NMR data later on.

### IR Analyses

In Fig. 6 are shown the IR spectra of asphalt Fractions 5, 9, and 15. These show important peaks at the following wave numbers ( $\text{cm}^{-1}$ ): 3400 ( $\nu_{\text{as}}$  OH and NH), 3060 ( $\nu_{\text{C-H}}$  ar), 2960 ( $\nu_{\text{as}}$   $\text{CH}_3$ ), 2920 ( $\nu_{\text{as}}$   $\text{CH}_2$ ), 2850 ( $\nu_{\text{as}}$   $\text{CH}_3$ ,  $\nu_{\text{as}}$   $\text{CH}_2$ ), 1735 ( $\delta_{\text{C-O-C}}$  carboxylic), 1610 ( $\delta_{\text{C=C}}$  arom), 1460 ( $\delta_{\text{as}}$   $\text{CH}_3$ ,  $\delta_{\text{as}}$   $\text{CH}_2$ ), 1380 ( $\delta_{\text{as}}$   $\text{CH}_3$ ), 1300 (C-N, R- $\text{NO}_2$ ,  $\text{SO}_2$  stretching), 1050–1200 ( $\nu_{\text{C-O}}$  ethers) and 700–900 ( $\delta_{\text{C-H}}$  out of plane). The assignment of the different peaks agrees well with that reported in the literature (26, 28, 32, 90). It should be noted that the relative intensities of the different peaks shown in Fig. 6 for the three asphalt fractions studied are

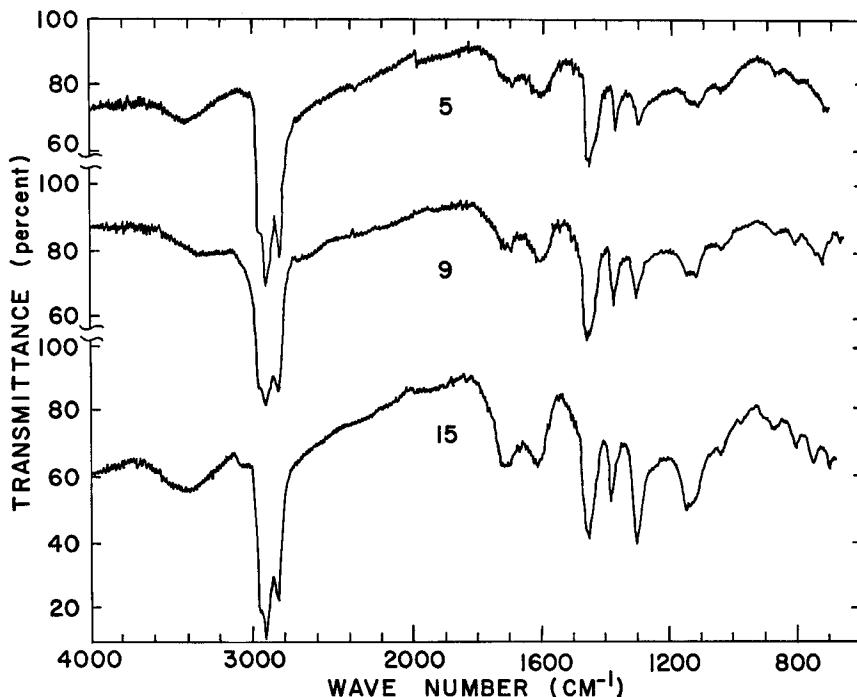
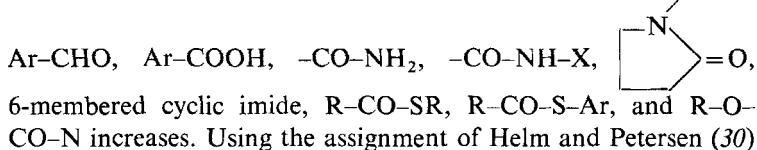



FIG. 6. IR spectra of asphalt fractions 5, 9, and 15.


TABLE 4

IR Relative Intensities Measured at Different Wave Numbers for Various Asphalt Fractions Using 10% Solutions in Each Case  
Wave number ( $\text{cm}^{-1}$ )

| No. | 2920 | 2850 | 2920 +<br>2850 | 1700 | 1610 | 1460 | 1380 | 1380/<br>1460 | 1300 | 1150 |
|-----|------|------|----------------|------|------|------|------|---------------|------|------|
| 5   | 0.44 | 0.43 | 0.87           | 0.02 | 0.01 | 0.16 | 0.06 | 0.38          | 0.04 | 0.11 |
| 6   | 0.52 | 0.50 | 1.02           | 0.02 | —    | 0.18 | 0.07 | 0.39          | 0.04 | 0.05 |
| 7   | 0.52 | 0.48 | 1.00           | 0.02 | —    | 0.17 | 0.07 | 0.41          | 0.02 | 0.11 |
| 8   | 0.44 | 0.47 | 0.91           | 0.01 | —    | 0.18 | 0.07 | 0.39          | —    | 0.06 |
| 9   | 0.47 | 0.45 | 0.92           | 0.02 | —    | 0.17 | 0.07 | 0.41          | 0.04 | 0.13 |
| 10  | 0.37 | 0.42 | 0.79           | 0.02 | —    | 0.17 | 0.07 | 0.41          | 0.05 | 0.07 |
| 11  | 0.33 | 0.36 | 0.69           | 0.02 | 0.01 | 0.16 | 0.07 | 0.44          | 0.07 | 0.15 |
| 12  | 0.30 | 0.35 | 0.65           | 0.03 | 0.02 | 0.17 | 0.07 | 0.41          | 0.02 | 0.08 |
| 13  | 0.25 | 0.31 | 0.56           | 0.03 | 0.02 | 0.17 | 0.07 | 0.41          | 0.09 | 0.15 |
| 14  | 0.21 | 0.25 | 0.46           | 0.04 | 0.02 | 0.14 | 0.06 | 0.43          | 0.12 | 0.09 |
| 15  | 0.18 | 0.23 | 0.41           | 0.05 | 0.03 | 0.14 | 0.05 | 0.36          | 0.13 | 0.16 |

not the same. To observe the changes that take place in the proportions of the various functional groups associated with the different asphalt fractions, quantitative studies were carried out by recording IR spectra of 10% asphalt solutions in dichloromethane and analyzing the relative intensities of the different peaks. The results are presented in Table 4. The intensity of the peak at  $3060 \text{ cm}^{-1}$ , attributed to aromatic protons (32), was not included in the table because its value is below the magnitude of the percent error of the instrument ( $\pm 5.0\%$ ). The results of the analyses presented in Table 4 suggest that as the molecular weight of the asphalt fractions decreases (Fractions 5 to 15):

- (a) The ratio  $1380/1460$  ( $\delta_{\text{CH}_3}/\delta_{\text{CH}_3} + \delta_{\text{CH}_2}$ ) remains constant within  $\pm 0.04$  of 0.40 and  $\delta_{\text{CH}_2}$  decreases. Thus the total paraffinic content (sum of the stretching vibrations of  $\text{CH}_3$  and  $\text{CH}_2$  ( $\nu 2920 + \nu 2850 \text{ cm}^{-1}$ ) or bending vibrations ( $\delta_{\text{CH}_3} + \delta_{\text{CH}_2}$ )) decreases.
- (b) The intensity of the peak around  $1700 \text{ cm}^{-1}$  attributed to C-O stretching vibrations (91) in compounds with groups such as



for the  $1700\text{ cm}^{-1}$  peak, it would seem that the number of carboxylic acid groups increases.

- (c) The aromaticity, calculated by the intensity of the  $1610\text{ cm}^{-1}$  peak ( $\delta_{\text{C}=\text{C}}$  arom), increases.
- (d) The intensity of the peak at  $1300\text{ cm}^{-1}$  (asym stretching of  $\text{SO}_2$ , C–N stretching, and C–O stretching of esters) and  $1150\text{ cm}^{-1}$  (C–O–C asym stretching of esters, C–CN asym stretching, sym  $\text{SO}_2$  stretching) shows no regular trends, primarily, it is believed, because these represent cumulative stretching vibrations due to three different groups, the proportion of each being different depending upon the molecular weight of the particular asphalt fraction.

Based on the results of the element analyses and the IR studies presented earlier, it is possible to draw a qualitative picture of the constitution of the various fractions; however, in order to elucidate the structure of asphalt in a more precise manner it is by far preferable to use NMR spectroscopy in conjunction with element analysis and IR studies. Brown and Ladner (12), during their studies on coal-like materials by element analyses, NMR and IR spectroscopy, developed equations to compute certain structural parameters for coals, e.g., aromaticity (fa), degree of substitution ( $\sigma$ ), and  $\text{H}_{\text{ar}}/\text{C}_{\text{ar}}$ , the atomic hydrogen to carbon ratio of the hypothetical unsubstituted aromatic material. Haley (47), who studied asphalts and asphaltene fractions, extended the approach of Brown and Ladner (12) and derived equations leading to the computation of unit sheet weight of asphaltene fractions. An approach similar to that of Haley (47) has been used in this work and is discussed below.

### NMR Analyses and Calculation of Structural Parameters

In Fig. 7 is shown a 220 MHz NMR spectrum of bitumen Fraction 13, recorded at  $75^\circ\text{C}$  in carbon tetrachloride as solvent and TMS as internal standard. The highlights of this spectrum are as follows:

- (1) 9.0 to  $9.5\tau$  methyl ( $-\text{CH}_3$ ) or  $\text{H}_\gamma$  protons.
- (2) 8.0 to  $9.0\tau$  methylene ( $-\text{CH}_2$ ) or  $\text{H}_\beta$  protons.
- (3) 7.0 to  $8.0\tau$  methine ( $-\text{CH}$ ) or  $\text{H}_\alpha$  protons.
- (4) 2.0 to  $3.6\tau$  aromatic protons  $\text{H}_{\text{ar}}$ .

These assignments agree well with those proposed by Williams (11), Ramsey et al. (19), Dickson et al. (20, 22), and Haley (24). A few samples

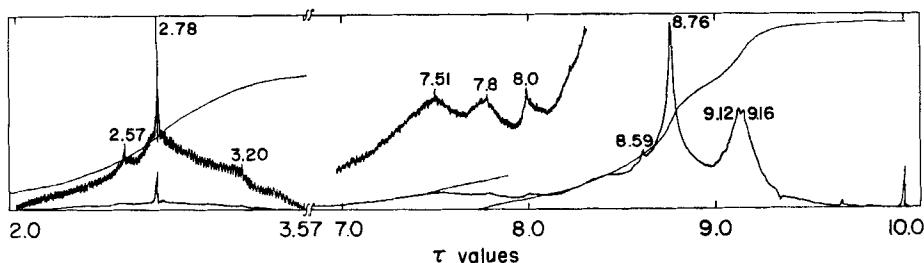



FIG. 7. A 220 MHz NMR spectrum of asphalt fraction 13 in carbon tetrachloride as solvent at 75°C and TMS as internal standard.

were also recorded at room temperature (25°C) in  $\text{CCl}_4$  as solvent with a 90 MHz instrument. The results of the analyses by 90 and 220 MHz instruments were the same.

In Table 5 are presented the data obtained from the NMR analyses in terms of  $\alpha$ ,  $\beta$ ,  $\gamma$ , and aromatic protons and presented in the form of ratios  $[\text{H}_\alpha/\text{H}_T, \text{H}_\beta/\text{H}_T, \text{H}_\gamma/\text{H}_T, (\text{H}_\beta + \text{H}_\gamma)/\text{H}_T, \text{H}_\gamma/\text{H}_\beta$  and  $\text{H}_{\text{ar}}/\text{H}_T$ , where  $\text{H}_T$  is the total number of protons]. It is interesting to note that, in the linear chain,  $\text{H}_\alpha$  increases,  $\text{H}_\beta$  decreases, and  $\text{H}_\gamma$  remains more or less constant as the molecular weight decreases. Furthermore, the paraffinic content (presented here as  $\text{H}_0^* = (\text{H}_\beta + \text{H}_\gamma)/\text{H}_T$ ) decreases with decreasing molecular weight with  $\text{H}_\gamma/\text{H}_\beta$  remaining within  $0.38 \pm 0.06$  and the aromaticity  $\text{H}_{\text{ar}}/\text{H}_T$  increasing with decreasing molecular weight. These two observations agree well with the IR spectroscopic data. The presence of high aromatic content in the lower molecular weight asphalt fractions was also pointed out by the GPC data. One would normally imagine that the proportion of aromatics should decrease with decreasing molecular weight of the asphalt fraction but such is not the case.

Based on the results obtained by GPC, element analyses, IR and NMR spectroscopy, the structural parameters of Brown and Ladner (12) and Haley (47) may be computed to evaluate the unit sheet weight of each asphalt fraction and relate it to its  $\bar{M}_w$  value. These parameters, however, are based on the assumption that (a) more than three rings are pericondensed and (b) no aromatic rings are joined by single bonds. If one assumes that these hypothesis are valid for the present system, the different parameters may be defined as follows:

$$\text{Aromaticity } (f_a) = \frac{\frac{C}{H} - \frac{H_x^*}{x} - \frac{H_0^*}{y}}{C/H} \quad (3)$$

TABLE 5  
The Proportions of  $\alpha$ ,  $\beta$ ,  $\gamma$ , and Aromatic Protons in the Various Asphalt Fractions as Computed from Their NMR Spectra

| No. | $H_{\alpha}^* \times 10^2$ | $H_{\beta}/H_T \times 10^2$ | $H_{\gamma}/H_T \times 10^2$ | $H_{\alpha}^* = (H_{\alpha} + H_{\gamma})/H_T \times 10^2$ | $H_{\alpha}^* = (H_{\alpha} + H_{\gamma})/H_T$ | $H_{\alpha}^* = H_{\alpha}^*/H_T \times 10^2$ |
|-----|----------------------------|-----------------------------|------------------------------|------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|
| 4   | 6.6                        | 67.3                        | 23.2                         | 90.5                                                       | 0.34                                           | 2.8                                           |
| 5   | 9.0                        | 65.9                        | 20.4                         | 86.3                                                       | 0.31                                           | 4.7                                           |
| 6   | 8.0                        | 65.3                        | 22.7                         | 88.0                                                       | 0.35                                           | 4.0                                           |
| 7   | 4.8                        | 69.6                        | 22.7                         | 92.3                                                       | 0.33                                           | 2.9                                           |
| 8   | 6.6                        | 69.8                        | 20.8                         | 90.6                                                       | 0.30                                           | 2.8                                           |
| 9   | 8.6                        | 67.4                        | 21.7                         | 89.1                                                       | 0.32                                           | 2.3                                           |
| 10  | 9.7                        | 59.7                        | 25.0                         | 84.7                                                       | 0.42                                           | 5.6                                           |
| 11  | 14.6                       | 57.1                        | 22.6                         | 79.7                                                       | 0.40                                           | 5.7                                           |
| 12  | 16.4                       | 54.4                        | 21.5                         | 75.9                                                       | 0.40                                           | 7.7                                           |
| 13  | 16.6                       | 51.5                        | 22.7                         | 74.2                                                       | 0.44                                           | 9.2                                           |
| 14  | 21.8                       | 50.2                        | 21.4                         | 71.6                                                       | 0.43                                           | 6.6                                           |
| 15  | 17.8                       | 48.5                        | 20.2                         | 68.7                                                       | 0.42                                           | 13.5                                          |
| 16  | 22.2                       | 46.5                        | 16.5                         | 63.0                                                       | 0.35                                           | 14.8                                          |
| 17  | 19.7                       | 43.5                        | 15.1                         | 58.6                                                       | 0.35                                           | 21.7                                          |
| 18  | 24.4                       | 42.6                        | 14.8                         | 57.4                                                       | 0.35                                           | 18.2                                          |
| 19  | 22.1                       | 46.6                        | 13.7                         | 60.3                                                       | 0.29                                           | 17.6                                          |
| 20  | 19.6                       | 45.8                        | 11.1                         | 56.9                                                       | 0.24                                           | 23.5                                          |
| 21  | 14.8                       | 50.4                        | 14.8                         | 65.2                                                       | 0.29                                           | 20.0                                          |

where  $H_{\alpha}^* = H_{\alpha}/H_T$  and  $H_0^* = (H_{\beta} + H_{\gamma})/H_T$ .  $x$  is the atomic ratio of hydrogen to  $\alpha$ -carbon substituents in the nonaromatic system and  $y$  is the atomic ratio of hydrogen to unattached groups in the same system (12).

Brown and Ladner (12) assumed that  $x = y = 2$  for coal-like materials. Ramsey et al. (19) and Dickson et al. (20), who studied asphalts, also used values of 2.0 for  $x$  and  $y$ . Haley (47), in his studies on asphalts, however, suggested a value of  $x = 1.92$ . Making use of this value, he was able to link unit sheet weight to molecular weights. In the present study, a value of  $x = y = 1.85$  was used for the computation of unit sheet weights. The origin of this value lies in Eq. (4), proposed by Brown and Ladner (12) to determine the ratio of aromatic protons to aromatic carbons:

$$\frac{H_{ar}^*}{C_{ar}} = \frac{\frac{H_{\alpha}^*}{x} + H_{ar}^* + \frac{O}{H}}{\frac{C}{H} - \frac{H_{\alpha}^*}{x} - \frac{H_0^*}{y}} \quad (4)$$

where  $H_{ar}^* = H_{ar}/H_T$ .

Keeping in mind that  $H_{ar}/C_{ar}$  never exceeds a value of 1, various values ranging from 1.8 to 2.0 were assigned to  $x$  and  $y$ , and it was found that  $x = y = 1.85$  yielded the ratio  $H_{ar}/C_{ar}$  always less than 1 and the unit sheet weights were always less than  $\bar{M}_n$  found by the VPO method. The other equations needed to compute the unit sheet weights and other relevant information about the asphalt fractions, as proposed by Haley (47), are as follows:

$$\text{Degree of substitution} = \frac{\frac{H_{\alpha}^*}{x} + \frac{O + S + N}{H}}{\frac{H_{\alpha}^*}{x} + \frac{O + S + N}{H} + H_{ar}^*} \quad (5)$$

Number of aromatic carbons  $C_{ar}$ :

$$\frac{H_{ar}}{C_{ar}} = \frac{1 + \sqrt{C_{ar} - 11}}{C_{ar}} \quad (6)$$

Naphthenic carbons:

$$\%C_{naph} = 54.3 \left( \frac{H_{\gamma}}{H_{\beta}} + 0.100 \right) \quad (7)$$

Paraffinic carbons:

$$\%C_{par} = 100 - (\%C_{naph} + \%C_{ar}) \quad (8)$$

Total number of carbons  $C_T$ :

$$C_T = C_{ar}/f_a \quad (9)$$

Unit sheet weight:

$$U.S.W. = \frac{C_T \times 12 \times 100}{C_T (\%)} \quad (10)$$

Based on the results of element analyses, NMR data, and VPO molecular weights and making use of Eqs. (3) to (10), in Table 6 are presented some of the structural parameters of asphalt Fractions 4 to 15. In all of the asphalt fractions, it is the paraffinic carbon ( $C_{par}$ ) content which is the highest, constituting 40 to 65% of the total carbon. This is followed by naphthenic carbon ( $C_{naph}$ ) whose proportion ranges between 20 and 30% and finally aromatic carbon ( $C_{ar}$ ) which varies between 10 and 30%. Although the extent of the different carbon contents varies, the degree of substitution  $\sigma$  remains constant within  $\pm 0.09$  of 0.64. The variation of certain other structural parameters may best be illustrated graphically as is shown in Fig. 8 where are listed the  $\%C_{naph}$ ,  $\%C_{par}$ , and  $f_a$  as a function of  $\bar{M}_w$ . It is of interest to note that while the aromaticity  $f_a$  and  $\%C_{naph}$  pass through a minimum for intermediate molecular weight asphalts, the  $\%C_{par}$  attains a maximum for these molecular weights. This may explain why the asphalt fractions with intermediate molecular weights having low aromatic but high paraffinic contents obey the Benoit universal GPC curve (see Fig. 5) whereas those with high or low molecular weights having higher aromatic but low paraffinic content do not fall on this calibration curve. Similar observations were recorded with aliphatic and aromatic hydrocarbons where the former followed the universal curve and the latter did not.

In Table 6 are also presented the ratios of  $H_{ar}/C_{ar}$  for the different asphalt fractions. These values may be used to compute the number of aromatic carbons ( $C_{ar}$ ) which in turn, when combined with the aromaticity factor ( $f_a$ ) and the help of Eq. (9), yields the total number of carbon ( $C_T$ ). Table 6 shows that  $C_T$  decreases regularly with decreasing molecular weight of the asphalt fractions. Earlier, in Table 5, it was noted that the percent aromatic protons  $H_{ar}^*$  increased regularly with decreasing molecular weight. Combining these two results it can be concluded that as the molecular weight of the asphalt fraction decreases, it becomes richer in compounds carrying smaller numbers of condensed ring systems.

In Table 6 are also presented the unit sheet weights of the various asphalt fractions as computed with the equations derived by Brown and Ladner

TABLE 6  
Structural Parameters for Various Asphalt Fractions

| No. | $f_a$ | $\sigma$ | $H_{ar}/C_{ar}$ | $C_{naph}$ (%) | $C_{par}$ (%) | $C_{ar}$ | $C_T$ | U.S.W. | $\bar{M}_w$ | $\bar{M}_w/U.S.W.$ |
|-----|-------|----------|-----------------|----------------|---------------|----------|-------|--------|-------------|--------------------|
| 4   | 0.32  | 0.79     | 0.46            | 23.9           | 44.1          | 31.0     | 97    | 1430   | 4040        | 2.8                |
| 5   | 0.23  | 0.62     | 0.71            | 22.3           | 54.7          | 12.8     | 56    | 810    | 2950        | 3.6                |
| 6   | 0.20  | 0.57     | 0.67            | 24.4           | 55.6          | 14.5     | 78    | 1000   | 1930        | 1.9                |
| 7   | 0.15  | 0.67     | 0.85            | 23.3           | 61.7          | 8.8      | 58    | 860    | 1290        | 1.5                |
| 8   | 0.13  | 0.68     | 0.89            | 21.7           | 65.3          | 7.9      | 59    | 840    | 1030        | 1.2                |
| 9   | 0.19  | 0.77     | 0.73            | 22.8           | 58.2          | 12.0     | 63    | 920    | 860         | 0.9                |
| 10  | 0.25  | 0.60     | 0.73            | 28.2           | 46.8          | 12.2     | 49    | 710    | 710         | 1.0                |
| 11  | 0.22  | 0.68     | —               | 27.1           | 50.9          | —        | —     | —      | —           | —                  |
| 12  | 0.29  | 0.62     | 0.86            | 27.1           | 43.9          | 8.5      | 29    | 420    | 590         | 1.4                |
| 13  | 0.33  | 0.60     | 0.87            | 29.3           | 37.7          | 8.4      | 25    | 360    | 590         | 1.6                |
| 15  | 0.32  | 0.49     | —               | 28.0           | 39.8          | 4.5      | 14    | 200    | 650         | 3.2                |

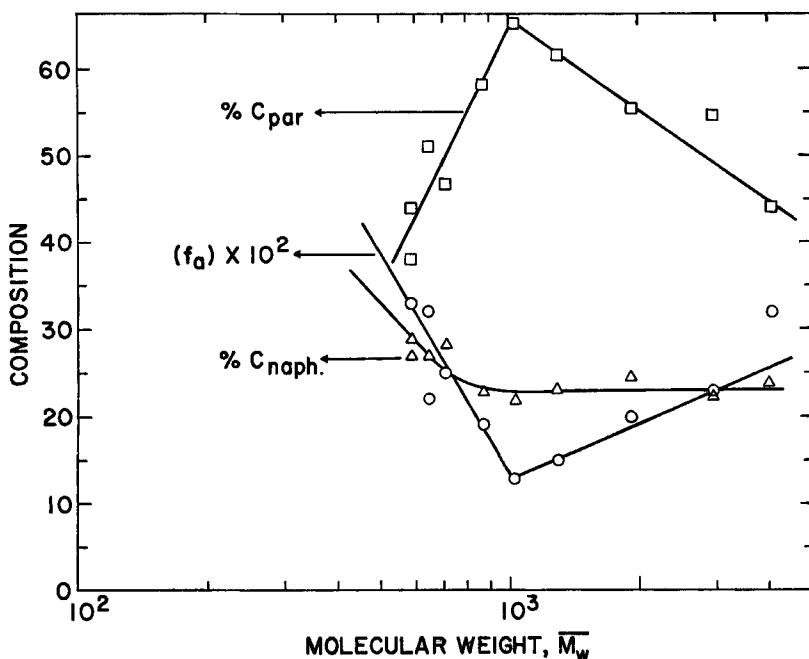



FIG. 8. Variation of  $f_a$ ,  $\%C_{naph}$ , and  $\%C_{par}$  as a function of  $\bar{M}_w$  of the asphalt fractions.

(12) and Haley (47). These unit sheet weights are compared with the GPC weight-average molecular weights of the asphalt fractions. The unit sheet weight of asphalt Fractions 5 to 9 is of the order of 900. Only Fractions 4 and 10 deviate considerably from this value. These results agree well with those obtained by Dickson et al. (20, 22) and Haley (47). Fractions 4 to 10 appear to be identical to the asphaltene fractions obtained by the precipitation of asphalt in isopentane. The other Fractions 12 to 15, having low values of unit sheet weights, are probably better compared to oils and resins.

The unit sheet weight of 900 for Fractions 5 to 9 is independent of the molecular weight of the fraction and thus would suggest that the asphalt fractions are built up of a number of unit sheets rather than a single large pericondensed ring system. A comparison of the unit sheet weight of an asphalt fraction with that of its weight-average molecular weight  $\bar{M}_w$  (see Table 6), suggests that the number of unit sheets required to build an

asphalt fraction may vary between 1 and 4. The formation of asphaltenes through the polymerization of a number of unit sheet weights is in agreement with results presented by Yen et al. (57) and Ferris et al. (18), who suggested that unit sheets were of the same dimension for all solvent fractionated asphaltenes and postulated a 16-ring structure of condensed aromatic sheets linked by saturated bridges.

It may be concluded from the above that:

- (1) The set of GPC columns used for the fractionation of asphalt samples yields good separation only in the higher molecular weight region. To obtain better fractionation, additional column length would be required in series with the columns used or other more efficient separation materials would have to be loaded in the columns.
- (2) Asphalt fractions behave much like polymers as illustrated by the  $[\eta]$  vs  $\bar{M}_w$  relationship and the fitting of  $[\eta]M$  data on the Benoit's universal calibration curve.
- (3) GPC, element analyses, IR, and NMR spectroscopy results show that aromaticity and naphthenic carbon content are small in the intermediate molecular weight asphalt fractions whereas paraffinic carbon content is maximum in the same fractions.
- (4) The unit sheet weight of the intermediate Fractions 5 to 9 is 900 and independent of the molecular weight of the fraction. These are made up of a number of unit sheets rather than a single large pericondensed ring system.

Studies on the rheological properties of these asphalt fractions are in progress. Results will be published in due course.

### Acknowledgments

The authors gratefully acknowledge the financial assistance received from B.P. Canada Limited, from the National Research Council of Canada, and from the Department of Education of the Government of Quebec. They likewise wish to extend particular thanks to Dr. Guy Perreault of the Defense Research Establishment at Valcartier (Quebec) for making available the ANA prep.-GPC used in this work and to Alan Fairman and Richard Kornicky of B.P. Canada Limited for their constructive discussions.

The work described in this paper forms part of the general research

program undertaken by the "Groupe de Recherches en Sciences Macromoléculaires" at Laval University.

### REFERENCES

1. C. Mack, *J. Phys. Chem.*, **36**, 2901 (1932).
2. G. W. Eckert and B. Weetman, *Ind. Eng. Chem.*, **39**, 1512 (1947).
3. K. A. Fischer and A. Schram, *5th World Petroleum Congress, 1959*, Section V, Paper 20.
4. R. S. Winniford, *J. Inst. Pet.*, **49**, 215 (1963).
5. R. N. Taxler and C. E. Coombs, *J. Phys. Chem.*, **40**, 1133 (1936).
6. R. N. J. Saal and J. W. A. Labout, *Ibid.*, **44**, 149 (1940).
7. C. Mack, *Am. Chem. Soc., Div. Pet. Chem., Prepr.*, **5**, A39 (1960).
8. D. B. Lorenz, R. J. Bolen, H. N. Dunning, and I. A. Eldib, *J. Colloid Sci.*, **16**, 493 (1961).
9. C. Mack, *Bituminous Materials, Asphalts, Tars and Pitches* (A. J. Hoiberg, ed.), Wiley-Interscience, New York, 1964, p. 25.
10. E. J. Dickinson and H. P. Witt, *Trans. Soc. Rheol.*, **13**, 485 (1969).
11. R. B. Williams, *Symposium on Composition of Petroleum Oils* (ASTM Special Technical Publication 224), 1958.
12. J. K. Brown and W. R. Ladner, *Fuel*, **39**, 87 (1960).
13. L. W. Corbett and R. E. Swarbrick, *Am. Chem. Soc., Div. Pet. Chem., Prepr.*, **6**, B161 (1961).
14. T. F. Yen and J. G. Erdman, *Ibid.*, **7**, 99 (1962).
15. R. S. Winniford and M. Bersohn, *Am. Chem. Soc., Div. Fuel Chem., Prepr.*, **6**, 21 (1962).
16. R. B. Girdler, *Proc. AAPT*, **34**, 45 (1965).
17. H. H. Oelert, *Z. Anal. Chem.*, **231**, 105 (1967).
18. S. W. Ferris, E. P. Black, and J. B. Clelland, *Ind. Eng. Chem., Prod. Res. Dev.*, **6**, 127 (1967).
19. J. W. Ramsey, F. R. McDonald, and J. C. Petersen, *Ibid.*, **6**, 231 (1967).
20. F. E. Dickson, B. E. Davis, and R. A. Wirkkala, *Anal. Chem.*, **41**, 1335 (1969).
21. J. G. Speight, *Fuel*, **49**, 76 (1970).
22. F. E. Dickson, R. A. Wirkkala, and B. E. Davis, *Separ. Sci.*, **5**, 811 (1970).
23. K. H. Altgelt and E. Hirsch, *Ibid.*, **5**, 855 (1970).
24. G. A. Haley, *Anal. Chem.*, **44**, 580 (1972).
25. E. J. Dickinson, *Proc. AAPT*, **43**, 132 (1974).
26. T. F. Yen and J. G. Erdman, *Am. Chem. Soc., Div. Pet. Chem., Prepr.*, **7**, 5 (1962).
27. J. R. Wright and P. G. Campbell, *J. Appl. Chem.*, **12**, 256 (1962).
28. F. E. Goodspeed and D. S. Montgomery, *Research Report R-98*, Mines Branch, Department of Mines and Technical Surveys, Ottawa, Canada, 1962.
29. H. H. Oelert, *Z. Anal. Chem.*, **231**, 81 (1967).
30. R. V. Helm and J. C. Petersen, *Anal. Chem.*, **40**, 1100 (1968).
31. T. F. Yen, *Am. Chem. Soc., Div. Fuel Chem., Prepr.*, **15**, 93 (1971); *Nature, Phys. Sci.*, **233**, 36 (1971).
32. A. B. Moustafa, *J. Oil Colour Chem. Assoc.*, **57**, 44 (1974).
33. F. K. Kawahara, J. F. Santer, and E. C. Julian, *Anal. Chem.*, **46**, 266 (1974).
34. C. W. Brown, P. F. Lynch, and M. Ahmadjian, *Appl. Spectrosc. Rev.*, **9**, 223 (1975).

35. K. H. Altgelt, *Makromol. Chem.*, **88**, 75 (1965).
36. J. P. Dickie and T. F. Yen, *Anal. Chem.*, **39**, 1847 (1967).
37. W. B. Richman, *Proc. AAPT*, **36**, 106 (1967).
38. J. A. Minshull, *Proceedings of the 4th Conference, ARRB*, 1968, p. 428.
39. H. J. Coleman, D. E. Hirsch, and J. E. Dooley, *Anal. Chem.*, **41**, 800 (1969).
40. B. C. B. Hsieh, R. E. Wood, L. L. Anderson, and G. R. Hill, *Ibid.*, **41**, 1067 (1969).
41. L. Snyder, *Ibid.*, **41**, 1223 (1969).
42. H. H. Oelert, *J. Chromatogr.*, **53**, 241 (1970).
43. H. H. Oelert, D. R. Latham, and W. E. Haines, *Separ. Sci.*, **5**, 657 (1970).
44. J. N. Done and W. K. Reid, *Ibid.*, **5**, 825 (1970).
45. C. A. Stout and S. W. Nicksic, *Ibid.*, **5**, 843 (1970).
46. J. G. Bergmann, L. J. Duffy, and R. B. Stevenson, *Anal. Chem.*, **43**, 131 (1971).
47. G. A. Haley, *Ibid.*, **43**, 371 (1971).
48. K. H. Altgelt, *Am. Chem. Soc., Div. Pet. Chem., Prepr.*, **15**, A262 (1970).
49. G. Huot and L. P. Blanchard, *Proc. CTAA*, **18**, 267 (1973).
50. M. H. B. Hayes, M. Stacey, and J. Standley, *Anal. Chem.*, **47**, 223 (1975).
51. H. E. Lumpkin, *Ibid.*, **28**, 468 (1956).
52. A. R. Hood, R. J. Clerck, and M. J. O'Neal, *J. Inst. Pet.*, **45**, 168 (1959).
53. R. J. Clerc and M. J. O'Neal, *Anal. Chem.*, **33**, 380 (1961).
54. J. P. Dickie and T. F. Yen, *Am. Chem. Soc., Div. Fuel Chem., Prepr.*, **12**, F140 (1968).
55. J. P. Dickie and T. F. Yen, *Org. Mass Spectrum*, **1**, 501 (1968).
56. T. F. Yen, L. J. Boucher, J. P. Dickie, E. C. Tynan, and G. B. Vaughan, *J. Inst. Pet.*, **55**, 87 (1969).
57. T. F. Yen, J. G. Erdman, and S. S. Pollack, *Anal. Chem.*, **33**, 1587 (1961).
58. M. A. Bestougeff and P. Gendrel, *Am. Chem. Soc., Div. Pet. Chem., Prepr.*, **9**, B-51 (1964).
59. T. F. Yen, J. G. Erdman, and A. J. Saraceno, *Anal. Chem.*, **34**, 694 (1962).
60. E. C. Tynan and T. F. Yen, *Fuel*, **43**, 191 (1969).
61. T. F. Yen and S. R. Sprang, *Am. Chem. Soc., Div. Pet. Chem., Prepr.*, **15**, A65 (1970).
62. T. F. Yen, *Naturwissenschaften*, **58**, 267 (1971).
63. T. F. Yen and D. K. Young, *Am. Chem. Soc., Div. Fuel Chem., Prepr.*, **15**, 47 (1971).
64. B. R. Ray, P. A. Witherspoon, and R. E. Grim, *J. Phys. Chem.*, **61**, 1296 (1957).
65. M. Wales and M. Vander Waarden, *Am. Chem. Soc., Div. Pet. Chem., Prepr.*, **9**, B21 (1964).
66. J. P. Dickie, M. N. Haller and T. F. Yen, *J. Colloid Interface Sci.*, **29**, 475 (1969).
67. H. Reerink, *Am. Chem. Soc., Div. Pet. Chem., Prepr.*, **16**, D18 (1971).
68. T. C. Davis, J. C. Petersen, and W. E. Haines, *Anal. Chem.*, **38**, 241 (1966).
69. T. C. Davis and J. C. Petersen, *Ibid.*, **38**, 1938 (1966).
70. T. C. Davis and J. C. Petersen, *Highw. Res. Rec.*, **134**, 1 (1966).
71. T. C. Davis and J. C. Petersen, *Proc. AAPT*, **36**, 1 (1967).
72. T. C. Davis and J. C. Petersen, *Anal. Chem.*, **39**, 1852 (1967).
73. S. M. Dorrence and J. C. Petersen, *Ibid.*, **41**, 1240 (1969).
74. F. A. Barbour, S. M. Dorrence, and J. C. Petersen, *Ibid.*, **42**, 668 (1970).
75. F. A. Barbour, R. V. Barbour, and J. C. Petersen, *J. Appl. Chem. Biotechnol.*, **24**, 645 (1974).

76. W. R. Middleton, *Anal. Chem.*, **39**, 1839 (1967).
77. L. R. Snyder, *Principles of Adsorption Chromatography*, Dekker, New York, 1968.
78. D. E. Hirsch, R. L. Hopkins, H. J. Coleman, F. O. Cotton, and C. J. Thompson, *Anal. Chem.*, **44**, 915 (1972).
79. M. Popl, V. Dolansky, and J. Mostecky, *J. Chromatogr.*, **117**, 117 (1976).
80. H. Benoit, Z. Grubisic, P. Rempp, D. Decker, and J. G. Zilliox, *J. Chim. Phys.*, **63**, 1507 (1966).
81. Z. Grubisic, P. Rempp, and H. Benoit, *J. Polym. Sci., B*, **5**, 753 (1967).
82. B. G. Belenkii, L. Z. Vilenchik, V. V. Nesterov, and T. I. Shashina, *Vysokomol. Soedin., Ser. A*, **15**, 2614 (1973).
83. B. G. Belenkii, I. A. Vakhtina, and O. G. Tarakanov, *Ibid., Ser. B*, **16**, 507 (1974).
84. Z. Grubisic, Z. Gallot, J. Aurenge, A. J. de Vries, and H. Benoit, International Symposium on Macromolecules, (IUPAC), Brazil, July 26, 1974.
85. G. D. Edwards and O. Y. Ng, *J. Polym. Sci., C*, **21**, 105 (1968).
86. T. Edstrom and B. A. Petro, *Ibid., C*, **21**, 171 (1968).
87. F. N. Larsen, *Appl. Polym. Symp.*, **8**, 111 (1969).
88. J. Coupek, S. Pokorny, and J. Pospisil, *J. Chromatogr.*, **95**, 103 (1974).
89. M. Popl, J. Coupek, and S. Pokorny, *Ibid.*, **104**, 135 (1975).
90. G. C. Pimentel, *J. Chem. Educ.*, **37**, 651 (1960).
91. K. Nakanishi, *Infrared Absorption Spectroscopy—Practical*, Holden-Day, San Francisco; Nankodo, Tokyo, 1962.

Received by editor February 14, 1977